Cold Wall CVD (CWCVD) in the Synthesis of Few Layered Graphene on Ni
نویسندگان
چکیده
We report the growth of graphene at a low temperature using the cold wall chemical vapor deposition technique (CWCVD). Few layered (~6-8 layers) graphene were grown on nickel-coated silicon with acetylene as the precursor gas. The advantage of the combination of the acetylene (as a carbon feedstock) and the nickel catalyst was the lowering of the graphene growth temperature. Nickel coated silicon samples were pre-treated (heat treatment in inert atmosphere) before the growth and the effect of the pre-treatment on the catalyst as well as on the grown film was studied. The final samples were characterized with scanning electron microscopy and Raman spectroscopy. In CWCVD route, the heating of only the substrate holder enabled high heating and cooling rates, which, along with the control over partial pressure of the precursor gas had profound effect on the formation of graphene. In the best sample we have achieved almost equal intensity of the G and 2D peaks in Raman spectrum, which implied about ~6-8 layers of Graphene. The defect peak (the D band) was extremely small in the sample and it was attributed to the ripples and the underlying roughness of the nickel film. We analyzed that a proper choice of the thickness of catalyst layer and a higher cooling rate after graphene growth it would be possible to obtain monolayered graphene. Similar samples grown in a normal atmospheric CVD (with some engineered design to promote fast cooling) were also compared with the cold wall CVD grown samples and plasma assisted CWCVD, and cold-wall CVD demonstrated a better control over the quality of graphene film through the fast cooling and a controlled partial pressure of the precursor gas.
منابع مشابه
Core/Shell Structure of Ni/NiO Encapsulated in Carbon Nanosphere Coated with Few- and Multi-Layered Graphene: Synthesis, Mechanism and Application
This paper focuses on the synthesis and mechanism of carbon nanospheres (CNS) coated with fewand multi-layered graphene (FLG, MLG). The graphitic carbon encapsulates the core/shell structure of the Ni/NiO nanoparticles via the chemical vapor deposition (CVD) method. The application of the resulting CNS and hybrids of CNS-FLG and CNS-MLG as reinforcement nanofillers in a polypropylene (PP) matri...
متن کاملSynthesis of Different Layers of Graphene on Stainless Steel Using the CVD Method
In this study, different types of graphene, including single-, few-, and multi-layer graphene, were grown on a stainless steel (SS) mesh coated with Cu catalyst by using the chemical vapor deposition (CVD) method. Even though the SS mesh consisted of different types of metals, such as Fe, Ni, and Cr, which can also be used as catalysts, the reason for coating Cu catalyst on the SS surface had b...
متن کاملHigh Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition
DOI: 10.1002/adma.201501600 CVD, as well as on its quality and suitability for fl exible electronic applications. Therefore, understanding the growth and properties of graphene obtained with cold-wall CVD is imperative to enable the exploitation of this material and facilitate the birth of novel graphene-based applications. Here we report a completely new mechanism for the growth of graphene by...
متن کاملSynthesis of few-layered graphene by ion implantation of carbon in nickel thin films.
The synthesis of few-layered graphene is performed by ion implantation of carbon species in thin nickel films, followed by high temperature annealing and quenching. Although ion implantation enables a precise control of the carbon content and of the uniformity of the in-plane carbon concentration in the Ni films before annealing, we observe thickness non-uniformities in the synthesized graphene...
متن کاملReview of chemical vapor deposition of graphene and related applications.
Since its debut in 2004, graphene has attracted enormous interest because of its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the preparation and production of graphene for various applications since the method was first reported in 2008/2009. In this Account, we review graphene CVD on various metal substrates with an emphasis on Ni and Cu. In additi...
متن کامل